Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier

نویسندگان

  • Andrew Watkins
  • Jonathan Timmis
چکیده

The mammalian immune system is a highly complex, inherently parallel, distributed system. The field of Artificial Immune Systems (AIS) has developed a wide variety of algorithms inspired by the immune system, few of which appear to capitalize on the parallel nature of the system from which inspiration was taken. The work in this paper presents the first steps at realizing a parallel artificial immune system for classification. A simple parallel version of the classification algorithm Artificial Immune Recognition System (AIRS) is presented. Initial results indicate that a decrease in overall runtime can be achieved through fairly näıve techniques. The need for more theoretical models of the behavior of the algorithm is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Resource Limited Immune Approach for Evolving Architecture and Weights of Multilayer Neural Network

A resource limited immune approach (RLIA) was developed to evolve architecture and initial connection weights of multilayer neural networks. Then, with Back-Propagation (BP) algorithm, the appropriate connection weights can be found. The RLIA-BP classifier, which is derived from hybrid algorithm mentioned above, is demonstrated on SPOT multi-spectral image data, vowel data and Iris data effecti...

متن کامل

Effect of Nonlinear Resource Allocation on AIRS Classifier Accuracy

Artificial Immune Recognition System (AIRS) is most popular immune inspired classifier. It also has shown itself to be a competitive classifier. AIRS uses linear method to allocate resources. In this paper, two different nonlinear resource allocation methods apply to AIRS. Then new algorithms are tested on 8 benchmark datasets. Based on the results of experiments, one of them increases the accu...

متن کامل

Breast cancer and liver disorders classification using artificial immune recognition system (AIRS) with performance evaluation by fuzzy resource allocation mechanism

Artificial Immune Recognition System (AIRS) classification algorithm, which has an important place among classification algorithms in the field of Artificial Immune Systems, has showed an effective and intriguing performance on the problems it was applied. AIRS was previously applied to some medical classification problems including Breast Cancer, Cleveland Heart Disease, Diabetes and it obtain...

متن کامل

An Efficient and Effective Immune Based Classifier

Problem statement: Artificial Immune Recognition System (AIRS) is most popular and effective immune inspired classifier. Resource competition is one stage of AIRS. Resource competition is done based on the number of allocated resources. AIRS uses a linear method to allocate resources. The linear resource allocation increases the training time of classifier. Approach: In this study, a new nonlin...

متن کامل

Effect of Fuzzy Resource Allocation Method on Airs Classifier Accuracy

Artificial Immune Recognition System (AIRS) is an immune inspired classifier that is comparable to many popular classifiers. Many researches have been conducted to improve the accuracy of AIRS and to identify the significant components of AIRS that could empower it for better performance. Some of these researches have focused on the resource allocation component of AIRS. This study investigates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004